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1. Literature

Many excellent books and reviews cover different aspects of liq-
uid crystals. The compilation below is far from being complete and
curious readers should take it as a starting point only.

1. The “gold standard” reference on liquid crystals: P. G. de
Gennes and J. Prost “The Physics of Liquid Crystals” [1].

2. Excellent review of basic properties (many topics are taken
from this review): M. J. Stephen, J. P. Straley “Physics of liquid
crystals” [2].

3. Symmetries, hydrodynamics, theory: P. M. Chaikin and T. C.
Lubensky “Principles of Condensed Matter Physics” [3].

4. Defects: O. D. Lavrentovich and M. Kleman, “Defects and
Topology of Cholesteric Liquid Crystals” [4]; Oleg Lavrentovich
“Defects in Liquid Crystals: Computer Simulations, Theory and
Experiments” [5].

5. Optics: Iam-Choon Khoo, Shin-Tson Wu, “Optics and Nonlinear
Optics of Liquid Crystals” [6].

6. Textures: Ingo Dierking “Textures of Liquid Crystals” [7].
7. Simulations: Michael P. Allen and Dominic J. Tildesley

“Computer simulation of liquids” [8].
8. Phenomenological theories: Epifanio G. Virga “Variational The-

ories for Liquid Crystals” [9].
9. History: David Dunmur and Tim Sluckin “Soap, science, and

flat-screen TVs: A history of liquid crystals” [10].

2. What is a liquid crystal?

The notion of a state of matter which is liquid-like and crystalline
at the same time seems absurd. It is, however, fully justified: liquid

E-mail address: denis.andrienko@mpip-mainz.mpg.de.

crystalline mesophases possess some typical properties of a liquid,
such as fluidity and the inability to support shear, formation and coa-
lescence of droplets. These mesophases also have certain crystalline
properties, such as anisotropy of optical, electrical, and magnetic
properties, as well as a periodic arrangement of molecules in one or
more spatial directions.

Depending on the arrangement of the molecules in a mesophase,
or its symmetry, liquid crystals are subdivided into nematics,
cholesterics, smectics, and columnar mesophases. Molecular arrange-
ments of these mesophases are depicted in Fig. 1.

2.1. Nematics

In a nematic mesophase molecules possess a long-range orien-
tational order with molecular long axes aligned along a preferred
direction. There is no long-range order in the positions of centers of
mass of molecules. The preferred direction may vary throughout the
medium and is called a director. The orientation of the director is rep-
resented by a unit vector, n(r). In a nematic, the molecules are able
to rotate around their long axes, and there is no preferential arrange-
ment of their ends, even if they differ. Hence, the sign of the director
has no physical significance, and the nematic behaves optically as
a uniaxial material with a center of symmetry. We will introduce a
mathematically rigorous definition of the director in Section 4. The
director and the molecular arrangement in a nematic mesophase
are sketched in Fig. 1, where the anisotropic shape of molecules is
depicted by ellipses.

While optically examining a nematic mesophase, we rarely
observe the idealized uniform equilibrium configuration of the
director. Fig. 2 (a) is an example of a schlieren texture of a nematic
taken using a microscope with crossed polarizers. Here, four dark
brushes emerge from every point-defect indicating that the director
is parallel to the polarizer or analyzer. The colors are Newton col-
ors of thin films and depend on the thickness of the sample. Since
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Fig. 1. Molecular arrangements in liquid crystalline mesophases. In a nematic mesophase, molecular orientations are correlated, while molecular positions are not. The average
orientation is termed a director, n. In a cholesteric mesophase the average molecular orientation twists through the medium with a certain periodicity, while positions of molecules
are not correlated. In a smectic A mesophase molecules lie in planes. Molecular axes are perpendicular to these planes but otherwise are not ordered within the planes. Smectic B
has a hexagonal packing of molecules in the planes, while in smectic C the director is tilted in the planes. Columnar mesophases are often formed by disc-shaped molecules. The
most common arrangements of columns in two-dimensional lattices are hexagonal, rectangular, and herringbone. In the herringbone mesophase molecules are tilted with respect
to the columnar axis.

point defects can only exist in pairs, two types of defects can be seen:
the first one has yellow and red brushes and the second one is less
colorful. The difference in appearance is due to different cores and
opposite signs of their topological charges, which are discussed later
in Section 12. The texture in Fig. 2 (b) is a photo of a thin nematic
film on an isotropic surface. Here the periodic stripes arise from the
competition between bulk elastic and surface anchoring forces in a
confined film. The surface anchoring aligns molecules parallel to the
bottom surface and perpendicular to the top surface of the film. The
elastic forces work against the distortions of the director field. When
the film is sufficiently thin, the lowest energy state corresponds to
the director in the plane of the film. The pattern in Fig. 2 (c) shows
a thread-like texture. Threads are analogous to dislocations in solids
and are referred to as disclinations. Nematics owe their name to these
defects: the Greek word “mgla′ ′ stands for thread.

From a chemical point of view, molecules forming nematic crys-
talline mesophases have anisotropic shapes, often with rigid molec-
ular backbones which define the long axes of molecules. Liquid
crystallinity is more likely to occur if molecules have flat segments,
e. g. benzene rings. Many liquid crystalline compounds have strong
dipole moments and easily polarizable groups. Typical compounds
forming nematics are shown in Fig. 3.

2.2. Cholesterics

The cholesteric mesophase is similar to the nematic: it has a long-
range orientational order, but no long-range positional order of the
centers of mass of molecules. It differs from the nematic mesophase
in that the director varies throughout the medium in a regular way
even in an unstrained state. The director distribution is precisely
what would be obtained by twisting a nematic aligned along the y
axis about the x axis. In any plane perpendicular to the twist axis
the long axes of the molecules align along a single preferred direc-
tion in this plane, but in a series of parallel planes this direction
rotates uniformly, as illustrated in Fig. 1. The secondary structure of
the cholesteric is characterized by the distance measured along the
twist axis over which the director rotates through a full circle. This
distance is called the pitch of the cholesteric, p. The periodicity length
of the cholesteric is actually only a half of this distance, since n and
−n are indistinguishable.

Formally, a nematic liquid crystal is a cholesteric of an infinite
pitch. As a result, there is no phase transition between nematic and
cholesteric mesophases: nematics doped with enantiomorphic com-
pounds become cholesterics of long but finite pitch. The molecules

forming the cholesteric mesophase have distinct right- and left-
handed forms, as illustrated in Fig. 3.

The pitch of common cholesterics is of the order of several hun-
dreds nanometers, which is comparable to the wavelength of visible
light. Through Bragg reflection, the periodic spiral arrangement is
responsible for the characteristic colors of cholesterics in reflection
and their very large rotatory power. The pitch can be quite sensitive
to temperature, flow, chemical composition, and applied magnetic or
electric fields [11]. Typical cholesteric textures are shown in Fig. 2.

2.3. Smectics

The important feature of a smectic mesophase, which distin-
guishes it from a nematic or a cholesteric one, is its stratification.
The molecules are arranged in layers and exhibit some correlations
in their positions in addition to the orientational ordering. The layers
can slide freely over one another. Depending on the molecular order
in layers, a number of different types of smectics have been observed.
In a smectic A, molecules are aligned perpendicular to the layers,
without long-range crystalline ordering within them, as shown in
Fig. 1. In a smectic C, the preferred molecular axis is not perpendicu-
lar to the layers, so that the phase has biaxial symmetry. In a smectic
B, there is a hexagonal crystalline order within the layers.

When placed between glass substrates, smectics do not assume
the simple arrangement shown in Fig. 1. To preserve their thick-
ness, the layers become distorted and can slide over one another in
order to accommodate the substrates. The smectic focal conic texture
appears due to these distortions. Typical textures formed by smectics
are shown in Fig. 2.

A number of compounds have both nematic (or cholesteric) and
smectic mesophases. As a general rule, the lower temperature phases
have a greater degree of crystalline order. The nematic mesophase
always occurs at a higher temperature than the smectic one; smec-
tic mesophases occur in the following order: A → C → B as the
temperature decreases.

2.4. Columnar mesophases

The columnar mesophase is a class of liquid-crystalline phases
in which molecules assemble into cylindrical structures. Originally,
these liquid crystals were called discotic liquid crystals because the
columnar structures are composed of stacked flat-shaped discotic
molecules, such as triphenylene derivatives shown in Fig. 3. Since
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Fig. 2. Liquid crystalline artwork. Nematics: (a) Schlieren texture of a nematic film with surface point defects. (b) Thin nematic film on an isotropic surface. (c) Nematic thread-
like texture. Nematic is the Greek word for “thread” observed on these textures. (d) Cholesteric fingerprint texture. The line pattern is due to the helical structure of the cholesteric
phase, with the helical axis in the plane of the substrate. (e) A short-pitch cholesteric liquid crystal in Grandjean or standing helix texture, viewed between crossed polarizers.
The bright colors are due to the difference in rotatory power arising from domains with different cholesteric pitches. This pattern occurs upon rapid cooling close to the smec-
tic A* phase, where the pitch strongly diverges with decreasing temperature. (f) Long-range orientation of cholesteric liquid crystalline DNA mesophases in a magnetic field.
(g, h) Focal conic texture of a chiral smectic A liquid crystal. (i) Focal conic texture of a chiral smectic C liquid crystal. (j) Hexagonal columnar phase with a typical spherulitic
texture. (k) Rectangular phase of a discotic liquid crystal. (l) Hexagonal columnar liquid-crystalline phase.
Source: Photos courtesy of Oleg Lavrentovich (http://www.lavrentovichgroup.com/textures.html), Ingo Dierking (http://softmatter-_dierking.myfreesites.net), Per Rudqvist,
Sivaramakrishna Chandrasekhar, Prasad Krishna, Nair Gita, and Jon Rourke (https://www2.warwick.ac.uk/fac/sci/chemistry/research/rourke/rourkegroup/mesogens/).

recent findings provide a number of columnar liquid crystals consist-
ing of non-discoid mesogens, this state of matter is now classified as
columnar liquid crystals [12].

Columnar liquid crystals are grouped according to the packing
motive of the columns. In columnar nematics, for example, molecules
do not form columnar assemblies but only float with their short axes
parallel to each other. In other columnar liquid crystals columns
are arranged in two-dimensional lattices: hexagonal, tetragonal,
rectangular, and herringbone, as shown in Fig. 1.

2.5. Lyotropic liquid crystals

Liquid crystals, which are obtained by melting a crystalline solid,
are called thermotropic. Liquid crystalline behavior is also found

in certain colloidal solutions, such as aqueous solutions of tobacco
mosaic virus and certain polymers. This class of liquid crystals is
called lyotropic. For lyotropic liquid crystals the important control-
lable parameter is the concentration, rather than temperature or
pressure. Most of the theories presented below are equally valid for
thermotropic and lyotropic liquid crystals. Generally, we will have a
thermotropic liquid crystal in mind as a basis for discussion.

3. Order tensor

To quantify the degree of molecular ordering at a specific posi-
tion as well as the change of the average molecular orientation in
space, we need to introduce local averages over the distribution of
molecular orientations. The orientation of a rigid, rod-like molecule

http://www.lavrentovichgroup.com/textures.html
http://softmatter-_dierking.myfreesites.net
https://www2.warwick.ac.uk/fac/sci/chemistry/research/rourke/rourkegroup/mesogens/
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Fig. 3. Typical compounds forming nematic, cholesteric, smectic, and columnar mesophases. Nematics: p-azoxyanisole (PAA). From a rough steric point of view it is a rigid rod
of length ∼20 Å and width ∼5 Å. The nematic state is found at high temperatures, between 116◦C and 135◦C. N-(p-methoxybenzylidene)-p-butylaniline (MMBA). The nematic
state is found at room temperatures, from 20◦C to 47◦C. This compound is chemically not very stable. 4-pentyl-4′-cyanobiphenyl (5CB). The nematic state is found at room
temperatures, between 24◦C and 35◦C. Typical cholesteric: [10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H cyclopenta[a]phenanthren-
3-yl] nonanoate (cholesteryl nonanoate) with a cholesteric phase between 79◦C and 90◦C. Typical columnar: 2,3,6,7,10,11-hexakishexyloxytriphenylene (triphenylene derivative)
has crystalline, columnar (70–100 ◦C), and isotropic mesophases.

is uniquely described by a unit vector u(i) along its long axis, as
depicted in Fig. 4. Since molecules possess a center of symmetry, the
average of the vector u(i) vanishes. It is, therefore, not possible to
introduce a vector as an order parameter, as it is done to describe
the magnetization of a ferromagnet. The next invariant which can be
used as an order parameter is the second rank tensor

Qab(r) =
1
N

∑
i

(
u(i)
a u(i)

b − 1
3
dab

)
, (1)

where the sum is performed over N molecules in a small but macro-
scopic volume located at the point r. The indices a and b denote the
Cartesian coordinates x, y, and z.

The tensorial order parameter has a number of useful properties:

1. Qab is symmetric. Indeed, Qab = Qba since u(i)
a u(i)

b = u(i)
b u(i)

a

and dab = dba .
2. It is traceless,

TrQab = Qxx + Qyy + Qzz =

=
1
N

∑
i

[(
u(i)

x

)2
+

(
u(i)

y

)2
+

(
u(i)

z

)2 − 1
]

= 0,

Fig. 4. Orientation of mesogens in a nematic mesophase. A unit vector u(i) along the
axis of i-th molecule describes its orientation. The director n corresponds to the aver-
age molecular alignment. Two molecular arrangements are shown: ideal prolate, with
all molecules aligned along the z axis, and oblate, with molecular axes uniformly
distributed in the xy plane.

since u is a unit vector. These two symmetries reduce the
number of independent components from 9 to 5.

3. In the isotropic phase Q iso
ab = 0.

To prove this, let us change to the spherical coordinate system,

ux = sin h cos0,

uy = sin h sin0,

uz = cos h.

Then

Qab =
∫ 2p

0
d0

∫ p

0
sin hdhf (h,0)

(
uaub − 1

3
dab

)
,

where f(h,0) is the probability to find a molecule with the
orientation given by the angles h, 0. In the isotropic phase
fiso(h,0) = 1/4p and therefore Qxx = Qyy = Q xy = Qzy = 0
because of the periodic in 0 functions integrated over their full
periods. For the Q zz component we obtain

Qzz =
1

4p

∫ 2p

0
d0

∫ p

0
sin hdh

(
cos2h − 1

3

)
=

=
1
6

(x3 − x)
∣∣∣1−1

= 0.

4. In a perfectly aligned prolate nematic with all molecules ori-
ented along the z axis, as shown in Fig. 4, the order tensor takes
the form

Q prolate =

⎛
⎝ −1/3 0 0

0 −1/3 0
0 0 2/3

⎞
⎠ .

Indeed, Qzz = uzuz − 1/3 = 1 − 1/3 = 2/3, and
Qxx = Qyy = −1/3 since Q is traceless.

5. In an oblate case, molecules are randomly oriented perpendic-
ular to the z axis, as depicted in Fig. 4. As a result, uz = 0 and
the order tensor simplifies to

Q oblate =

⎛
⎝ 1/6 0 0

0 1/6 0
0 0 −1/3

⎞
⎠ .
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4. The director and the scalar order parameter

The five independent components of the order tensor often lack
clear physical interpretation. In certain cases we can simplify this
tensorial object and introduce more intuitive and physically tractable
quantities. Indeed, a symmetric second-order tensor has three real
eigenvalues and three corresponding orthogonal eigenvectors. A
Cartesian coordinate system can be found in which this tensor is
diagonal, with the diagonal elements k1, k2, and − k1 − k2. Let us
order the eigenvalues according to their absolute values. The eigen-
vector with the largest absolute eigenvalue we will call a director, n.
The corresponding eigenvalue, S, is the scalar order parameter.

The order tensor can now be written in the form

Qab = S
(

nanb − 1
3
dab

)
+ B(la lb − mamb),

where B is the biaxiality of the molecular distribution, and the unit
vectors l, n, and m form a local orthonormal triad.

In a uniaxial nematic, the molecular distribution function is axi-
ally symmetric, the two smaller eigenvalues are equal, B = 0, and
the order tensor simplifies to

Qab = S
(

nanb − 1
3
dab

)
, (2)

where na are the components of the director n in a laboratory (fixed)
coordinate system.

If we choose n along the z axis of the coordinate system, the three
nonzero components of the order tensor become

Qzz =
2
3

S, Qxx = Qyy = − 1
3

S.

Hence, the scalar quantity S measures the degree of a local
molecular alignment. Quantitatively, if f(h) sin hdh is the fraction of
molecules whose axes make angles between h and h + Dh with the
preferred direction, then

S =
∫ p

0

(
1 − 3

2
sin2

h

)
f (h) sin hdh, (3)

where f (h) =
∫ 2p

0 f (h,0)d0.
Uniaxial liquid crystalline mesophases, such as nematics and

cholesterics, can therefore be characterized by the scalar order
parameter S(r) and the director orientation n(r). In the isotropic
phase S = 0, while in the nematic or cholesteric phases − 1

2 ≤ S ≤ 1.
S = 1 corresponds to a perfect prolate alignment, while S = − 1

2
corresponds to an ideal oblate orientation of mesogens. Both oblate
and prolate molecular arrangements are depicted in Fig. 4.

5. Landau–de Gennes free energy

With the appropriate order parameter at hand we can assume,
in the spirit of Landau theories, that the free energy density is an
analytic function of the order parameter tensor Qab. The excess of
this free energy with respect to the isotropic phase, g, can therefore
be expanded in a power series of Qab. Such expansions are justified
near the nematic-isotropic transition temperature, where Q is small.
Since the free energy is invariant under rigid rotations, all terms of
the expansion must be scalar functions of the tensor Qab. This tensor

has three independent invariants, Tr(Q) = 0, Tr(Q2), and det(Q).
Expanding g in terms of these invariants up to the fourth order gives

g =
A
2

Tr(Q 2) − B
3

Tr(Q 3) +
A
4

Tr(Q 2)2

=
A
2

QabQab − B
3

QabQbcQca +
C
4

QabQabQcdQcd, (4)

where A, B, and C are some functions of pressure P and temperature T.
Typical to Landau-type theories, this model equation of state predicts
a phase transition near the temperature where A vanishes. It is often
assumed that A has the form

A = A′ (T − T∗) .

The coefficients B and C are normally taken to be constants. In
Section 7.1 we will show that the transition temperature itself is
somewhat above T∗.

If the order parameter is slowly varying in space, the free energy
will also contain gradients of the order parameter. As before, transla-
tional and rotational invariance restricts the combinations of deriva-
tives of Q. Taking into account the allowed combinations, the elastic
free energy can be written as [13,14]

ge =
L1

2
∂Qij

∂xk

∂Qij

∂xk
+

L2

2
∂Qij

∂xj

∂Qik

∂xk
+

L3

2
∂Qik

∂xj

∂Qij

∂xk

+
L4

2
elikQlj

∂Qij

∂xk
+

L6

2
Qlk

∂Qij

∂xl

∂Qij

∂xk
, (5)

where Li are elastic constants. The first four terms are quadratic and
the last term is cubic in the scalar order parameter. In fact, there are
seven elastic terms of cubic order [15,16]. In Section 6 we will show
that a uniaxial nematic has six independent bulk elastic constants. To
model a nematic state with different elastic constants k11 and k33, it
is sufficient to include only the L6 term.

The constants Li are related to Frank-Oseen elastic constants
by [13]

6S2L1 =k33 − k11 + 3k22,

S2L2 =k11 − k22 − k24,

S2L3 =k24,

S2L4 =2t0k22,

2S3L6 =k33 − k11,

where S is the scalar nematic order parameter at which Li are
measured, t0 is the chirality of the liquid crystal.

Typical values for a nematic compound 5CB are
A′ = 0.044 × 106 J/m3 K, B = 0.816 × 106 J/m3, C = 0.45 ×
106 J/m3, L1 = 6 × 10−12 J/m, L2 = 12 × 10−12 J/m, T∗ =
307 K [17]. The nematic-isotropic transition temperature for 5CB is
TNI = 308.5 K.

6. Frank-Oseen free energy

In an unstrained nematic, a uniform director orientation is the
global minimum of its free energy. How much free energy does it
take to deform this uniform director field? To answer this question,
we can rewrite the Landau–de Gennes free energy in terms of the
director n(r) by using the relation between the order tensor and the
director, Eq. (2). An alternative approach is to consider curvature
strains, or deformations of relative director orientations away from
the equilibrium position. The restoring forces which arise to oppose
these deformations are curvature stresses or torques. If the director
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field varies slowly on the scale of intermolecular distances, the curva-
ture stresses are proportional to the curvature strains. Equivalently,
the free energy density is a quadratic function of the curvature
strains.

In a local Cartesian coordinate system (x, y, z) with the z axis
parallel to the director n (the x and y axes can be chosen arbi-
trarily because the liquid crystal is uniaxial) the six components of
curvature are

splay: s1 =
∂nx

∂x
, s2 =

∂ny

∂y
,

twist: t1 = −∂ny

∂x
, t2 =

∂nx

∂y
,

bend: b1 =
∂nx

∂z
, b2 =

∂ny

∂z
.

These deformation types are shown in Fig. 5.
The director deformation can be expanded in a Taylor series in

powers of x, y, and z, which are measured from the local coordinate
origin

nx(r) = s1x + t2y + b1z + O(r2),

ny(r) = −t1x + s2y + b2z + O(r2),

nz(r) = 1 + O(r2).

To obtain the free energy of a strained nematic, we now expand
the elastic free energy up to the second order in strains,

g =
6∑

i=1

kiai +
1
2

6∑
i,j=1

kijaiaj, (6)

where ki and kij = kji are the curvature elastic constants and
a1 = s1, a2 = t2, a3 = b1, a4 = −t1, a5 = s2, a6 = b2.

Not all terms in this expansion are invariant with respect to the
transformations which do not change the physical description of the
liquid crystalline mesophase. In a uniaxial liquid crystal, the free
energy density is invariant with respect to a rotation around the z
axis. Considering a few special cases, such as rotations of 1

2p and 1
4p

about z, we can show that there are only two independent moduli

Fig. 5. The three distinct curvature strains of a uniaxial liquid crystal: splay, twist, and
bend.

ki, and that out of the thirty-six kij, only five are independent. The
expression for the free energy density simplifies to

g = k1(s1 + s2) + k2(t1 + t2) +
k11

2
(s1 + s2)2 +

k22

2
(t1 + t2)2

+
k33

2

(
b2

1 + b2
2

)
+ k12(s1 + s2)(t1 + t2)

− (k22 + k24)(s1s2 + t1t2).

The last term can be written as

s1s2 + t1t2 =
∂

∂x

(
nx

∂ny

∂y

)
− ∂

∂y

(
nx

∂ny

∂x

)
.

It contributes only to the surface energy and can be omitted when
studying bulk properties of liquid crystals.

In the presence of additional symmetries g can be simplified even
further:

1. If the molecules are nonpolar or, if polar, are distributed with
equal probability in the two directions, then the choice of the
sign of n is arbitrary. We have chosen a right-handed coor-
dinate system in which z is positive in the direction of n.
A reversal of n which retains the chirality of the coordinate
system generates the transformation

n → −n, x → −x, y → −y, z → −z.

Invariance of the free energy under this transformation
requires

k1 = k12 = 0 (nonpolar).

If k1 �= 0, the equilibrium state has finite splay.
2. In the absence of enantiomorphism, or chiral molecules which

have different mirror images, g should be invariant with
respect to reflections in the plane containing the z axis

x → x, y → −y, z → z.

This introduces the constraints

k2 = k12 = 0 (mirror symmetry).

If k2 �= 0 then the equilibrium state has finite twist and we are
dealing with a cholesteric mesophase.

It is convenient to define

s0 = − k1

k11
, t0 = − k2

k22

and to add two constant terms to g, 1
2 k11s2

0 and 1
2 k22t2

0, so that it
becomes evident that s0 and t0 are the splay and twist of the state
which minimizes the free energy,

g =
1
2

k11(s1 + s2 − s0)
2 +

1
2

k22(t1 + t2 − t0)2

+
1
2

k33

(
b2

1 + b2
2

)
+ k12(s1 + s2)(t1 + t2).
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Here, s0 vanishes in the absence of polarity, t0 in the absence
of enantiomorphy, and k12 vanishes unless both polarity and
enantiomorphy occur together.

The free energy density can now be re-written in a vector
notation. Substituting

s1 + s2 =
∂nx

∂x
+

∂ny

∂y
= ∇ • n,

−(t1 + t2) =
∂ny

∂x
− ∂nx

∂y
= n • (∇ ×n),

b2
1 + b2

2 =
(

∂nx

∂z

)2

+
(

∂ny

∂z

)2

= (n × (∇ ×n))2

into the expression for the free energy, we obtain the Frank-Oseen
elastic free energy density for nematics and cholesterics

g =
1
2

k11(∇ • n − s0)2 +
1
2

k22(n • (∇ ×n) + t0)
2

+
1
2

k33(n × (∇ ×n))2 − k12(∇ • n)(n • (∇ ×n)). (7)

It is sometimes useful to consider a nonpolar, nonenantiomor-
phic liquid crystal where bend, splay, and twist constants are equal
(one-constant approximation). The free energy density for this model
liquid crystal has a simple form,

g =
1
2

k
[
(∇ • n)2 + (∇ ×n)2

]
.

Minimizing the free energy
∫

V gdV with an additional constraint
n2 = 1, we obtain the Euler-Lagrange equation for the director

− k11 ∇ (∇ • n) + k22 [A(∇ ×n) + (∇ ×(An))]

+ k33 [((∇ ×n) × B) + (∇ ×(B × n))] + ln = 0,

where A = n • (∇ × n), B = (n × (∇ × n)), l is a Lagrange multiplier
which can be determined from the condition n2 = 1.

7. Nematic-isotropic phase transition

In thermotropic liquid crystals, the isotropic to nematic phase
transition takes place upon cooling. The densities of two mesophases
are practically identical, and the transition has a weak first-order
character. We will see that the ordered mesophases of thermotrops
are stabilized by the enthalpic part of the free energy, while the
orientational entropy favors the isotropic state. In lyotropic liq-
uid crystals, the ordered and disordered mesophases have different
densities, and the transition is driven by the competing rotational
and translational entropies. After summarizing the results of the
phenomenological Landau–de Gennes theory, we will discuss two
molecular descriptions of the nematic-isotropic phase transition:
the self-consistent mean-field approach of Maier and Saupe and the
Onsager density functional theory.

7.1. Landau–de Gennes theory

In Section 4 we have shown that the tensorial order parameter
of a uniaxial liquid crystal can be written as Qab = S

(
nanb − 1

3dab

)
.

Substituting this expression into Eq. (4), we can rewrite the excess
free energy in terms of the scalar order parameter S,

g =
1
3

A′(T − T∗)S2 − 2
27

BS3 +
1
9

CS4. (8)

This dependence is shown in Fig. 6 for three different
temperatures.

The value of S which minimizes this free energy is one of the
solutions to the following equation,

AS − 1
3

BS2 +
2
3

CS3 = 0.

The two relevant solutions

SI = 0,

SN = (B/4C)[1 + (1 − 24b)1/2],

where b = AC/B2, correspond to the values of the order parameter
in the isotropic and nematic mesophases, respectively.

At the transition temperature Tc the free energies of the isotropic
and nematic mesophases are equal, which results in

bc =
1

27
, Tc = T∗ +

1
27

B2

A′C
, Sc =

B
3C

.

Above Tc the isotropic, below Tc the nematic state is stable.
The temperature T∗ corresponds to the limit of metastability of

the isotropic phase. It should be possible, in principle, to supercool
the isotropic liquid to this temperature. At T∗, where the coefficient
A in the free energy changes sign, S = 0 is no longer a local min-
imum of the free energy and the isotropic phase becomes unstable.
Likewise, the nematic phase becomes unstable when b > 1/24. This
determines a temperature T∗∗ = T∗ + B2/(24A′C) which sets the
stability limit for the nematic mesophase upon heating.

The Landau–de Gennes theory predicts a discontinuous phase
transition at a temperature Tc slightly above T∗. The source of this
first-order phase transition is the odd-order powers of S in the
expansion of the free energy density. These powers are present in
the expansion because the sign of S has a clear physical meaning: it
differentiates between the prolate and oblate molecular orderings.

7.2. Maier-Saupe theory

The Landau theory of the nematic-isotropic transition is entirely
phenomenological: all molecular details are hidden in the material
constants A, B, and C. Maier and Saupe have given the first microscopic

Fig. 6. Gibbs free energy density of a uniaxial nematic as a function of the scalar order
parameter for the three temperatures, T∗∗ , Tc , and T∗ for 5CB. The inset shows the
change of the order parameter with temperature.
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model for the phase transition in a nematic liquid crystal [18,19]. The
theory is based on three assumptions:

• Molecules interact via an orientation-dependent potential.
• The positions of the centers of mass of molecules are not affected

by the orientation-dependent interaction.
• The mean field approximation.

In other words, a particular molecule interacts with an appropri-
ately chosen external field. This field replaces the interaction of all
the other molecules to an arbitrary molecule,

V(u, Q ) = − 3
2

vQab

(
uaub − 1

3
dab

)
, (9)

where the molecular orientation is described by a unit vector u.
The probability distribution function for the orientation of a

molecule in the presence of this external field takes the form

f (u) =
1
Z

exp
[
− V(u, Q )

kBT

]
, (10)

where Z =
∫

du exp(−V(u, Q )/kBT) is the normalization factor, and
du indicates an integration over all orientations of u. This distribu-
tion function is shown in Fig. 7 for several values of the scalar order
parameter S.

The theory is made self-consistent by requiring the average value
of uaub − 1

3dab to be equal to Qab,

Qab =
∫ (

uaub − 1
3
dab

)
f (u)du.

For a uniaxial liquid crystal with the director oriented along the
z axis we can define an angle h between u and z. Using the rela-
tion between the tensorial and scalar order parameters discussed in
Section 4, the zz component of this equation can be written as

S =
2p
Z

∫ p

0

(
3
2

cos2h − 1
2

)
exp

[
− V(h, S)

kBT

]
sin hdh, (11)

Fig. 7. Maier-Saupe theory: Distribution functions of molecular orientations for three
different temperatures. At low temperatures two sharp peaks at 0 and 180◦ indicate
that the mesophase is well aligned. The inset shows the entropy of the system relative
to its isotropic phase. The entropy monotonically decreases with the increase of the
scalar order parameter.

where V(h, S) = −vS
(

3
2 cos2h − 1

2

)
and

Z = 2p
∫ p

0
exp

[
− V(h, S)

kBT

]
sin hdh.

Eq. (11) has a trivial solution, S = 0, which corresponds to the
isotropic phase. The second solution can be written in a parametric
form after integrating by parts,

S =
3
4

[
1

xD(x)
− 1

x2

]
− 1

2
,

kBT
v

=
3
2

S
x2

,

where D(x) = exp(−x2)
∫ x

0 exp(y2)dy is Dawson’s integral. The
dependence of S on T is shown in Fig. 8.

To analyze the stability of these solutions we need the expression
for the free energy density of the system. The enthalpic part is given
by the average interaction energy of a particle with the surrounding
molecules,

U(T, S) =
1
2

〈
V(u, Q )

〉
= − 3

4
vQ ab

∫ (
uaub − 1

3
dab

)
f (u)du

= − 3
4

vQ abQ ab = − 3
4

vS2
(

1
9

+
1
9

+
4
9

)
= − 1

2
vS2.

Note that the prefactor 1/2 removes the double-counting of
particle-particle interactions, which is an artifact of the mean-field
approximation.

The entropy of the system with respect to its isotropic state can
be calculated with the help of the Leibler–Kullback divergence,

D(T, S) = −kB

∫
ln

f (u)
fiso(u)

f (u)du

= kB ln
(

Z
4p

)
+

1
T

V(u, Q ) ,

Fig. 8. Maier-Saupe theory: Dependence of the scalar order parameter on the dimen-
sionless temperature. The nematic-isotropic transition takes place at kBTc/v = 0.22,
Sc = 0.43. The inset shows corresponding free energy dependences on the order
parameter S below, above, and at the transition.
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where fiso(u) = 1
4p is the distribution function of the isotropic phase.

The dependence of this entropy on the scalar order parameter S is
shown in the inset of Fig. 7.

The stable mesophase is given by the solution which minimizes
the free energy per particle,

F(T, S) = U(T, S) − TD(T, S).

The dependence of this free energy on the order parameter S is
shown in the inset of Fig. 8. The Maier-Saupe theory predicts a weak
first-order phase transition at kBTc = 0.22v with the corresponding
order parameter Sc = 0.43.

The Maier-Saupe theory can be re-formulated by postulating that
the excess interaction energy is proportional to the square of the
scalar order parameter, U(T, S) = − 1

2 vS2 [20]. Using the variational
calculus we can then show that the minimum of the free energy
F(T, S) is achieved for the distribution of molecular orientations given
by Eq. (10).

7.3. Onsager theory

The Maier-Saupe theory is commonly applied to liquids which
are only slightly compressible. Onsager [21] proposed a description
which can be applied to dilute suspensions of particles where the
change in free energy with density is relatively small. The Onsager
theory predicts large changes in density at the transition, as is
observed for such systems. Similar to Maier-Saupe, it is a molecular
field theory, with the difference that the average energy is replaced
by the orientation-dependent translational entropy.

As before, let us consider an ensemble of elongated particles inter-
acting pairwise through some potential V(1, 2) which now depends
on both positions and orientations of molecules, 1 = (r1, u1).
Onsager has shown how the Mayer cluster theory might be used
to give an expansion for the equation of state of this system [21].
Onsager’s expression for the Helmholtz free energy per particle is
expressed in terms of the single-particle density,q(1) ≡ q(r1)f(r1, u1),

bF[q] =
∫

q(1)
{

lnq(1)K3 − 1 − bl + bU(1)
}

d(1)

− 1
2

∫
f (1, 2)q(1)q(2)d(1)d(2). (12)

Here b = 1/kBT, K2 = 2p�
2b/m is the thermal de Broglie wave-

length, l is the chemical potential, U(1) is the external potential
energy, and f (1, 2) = exp [−V(1, 2)/kBT] − 1 is the Mayer f-function.

The equilibrium single-particle density that minimizes this free
energy is a solution of the Euler-Lagrange equation

lnq(1)K3 − bl + bU(1) −
∫

f (1, 2)q(2)d(2) = 0, (13)

obtained by the variation of the functional, Eq. (12).
For hard objects the integral of the Mayer f-function over spatial

coordinates reduces to the excluded volume of these objects, since
V(1, 2) = 0 if they do not overlap and V(1, 2) = ∞ if they overlap. For
spherocylinders of length L and width D this excluded volume reads

E(u1, u2) = 2L2D| sinc12| + 2pLD2 +
4
3
pD3

≈ 2L2D| sinc12|,

where cosc12 = u1 • u2 and the approximate expression holds for
L 
 D.

In a uniform nematic, q(r) = const ≡ q, and the orientation-
dependent part of the free energy reduces to

bF[ f ] =
∫

f (u) ln f (u)du + qDL2
∫

|sinc12|f (u1)f (u2)du1du2.

The first term in this expression is simply the rotational entropy
of molecules, identical to the D(T, S) in the Maier-Saupe theory,
except that it is not measured with respect to the isotropic phase.
Its dependence on the order parameter, which is shown in the inset
of Fig. 9, is practically the same as the prediction of the Maier-
Saupe theory. As anticipated, the rotational entropy decreases with
the increase of the nematic order parameter. The second term is the
excluded volume part of the translational entropy, which apparently
depends on the mesophase ordering, since the excluded volume
depends on the relative orientation of mesogens.

In the nematic state, c12 are relatively small and the excluded vol-
ume gives rise to the translational entropy of the system which can
be estimated as

DStr = −kB ln (1 − Vexcl/V) ∼ kBqL2D,

where q = N/V is the density of rods. However, there is also a
decrease in the orientational entropy in the nematic state in compar-
ison to the isotropic state

DSor = kB lnYN/YI ∼ kB,

where YI,N is the number of orientational states in the isotropic and
nematic mesophases, respectively. At the nematic-isotropic transi-
tion, these two contributions compensate each other, DSor ≈ DStr,
predicting the critical density qc ∼ 1/(L2D), or a critical volume frac-
tion 0c = Vrods/V ∼ (NLD2)/(NL2D) = D/L. Therefore, by increasing
the length-to-breadth ratio we favor the formation of the nematic
mesophase.

Eq. (13) can be solved numerically for any form of the second
virial coefficient by expanding the density in Legendre polynomials.
Direct minimization of the free energy functional is also possible and
has the advantage that a well-chosen trial function can be used to

Fig. 9. Onsager theory: Distribution functions of molecular orientations for three dif-
ferent values of parameter a. The inset shows the entropy of the system with respect
to its isotropic mesophase. Both Onsager and Maier-Saupe approaches are shown.
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simplify the calculations. Onsager followed the latter approach and
employed a one-parameter trial function for f(u),

f (u, a) =
a cosh(a cos h)

4p sinh a
,

where a is a variational parameter. This distribution is shown in Fig. 9
and is very similar to the distribution function of the Maier-Saupe
theory. With the help of this ansatz, the dependence of the scalar
order parameter S on the parameter a can be written as

S = 2p
∫ p

0

(
3
2

cos2h − 1
2

)
f (u, a) sin hdh

= 1 +
3
a2

− 3
a tanh a

.

The average of sin2
c12 = sin2(h1 − h2) + sin2

h1sin2
h2sin2(01 −

02) can be easily performed numerically after integrating over 01
and 02

∫ 2p

0
d01

∫ 2p

0
d02 sinc12 = 8p

√
1 + mE

(
m

1 + m

)
,

where E(m) is the complete elliptic integral of the second kind, and

m =
sin2

h1sin2
h2

sin2(h1 − h2) + sin2
h1sin2

h2

.

The numerical integration of the double integral over h1 and h2

provides the dependence of the translational entropy on the order
parameter and is shown in Fig. 10, together with the rotational
entropy. As expected, the two contributions compete: in an ordered
system with S ≈ 1 the rotational entropy is at its minimum, while the
translational entropy is at its maximum, since the excluded volume
is the smallest for c12 = 0.

The inset of Fig. 10 illustrates the dependence of the free energy
on the order parameter for three values of the dimensionless density,
qLD2. If q is small, F has only one minimum at a = 0, which cor-
responds to the isotropic state. Above qI, another minimum appears
which corresponds to a nematic state. If q exceeds qN, the minimum
at a = 0 disappears, and there is only one minimum correspond-
ing to the nematic state. Between qI and qN the free energy has two
minima, and the thermodynamically favorable state is the one with

Fig. 10. Onsager theory: Translational and rotational entropies of the system as a
function of the nematic order parameter. The inset shows the free energy of the system
for three different dimensionless densities.

the lower free energy. It does not have to be an equilibrium state,
because the free energy of the system can be lowered even more by
a macroscopic phase separation. Indeed, if the system of density q

and volume V separates into two phases with densities q1 and q2 and
volumes V1 and V2, its total free energy changes to

Ftotal = V1F1 + V2F2 =
q2 − q

q2 − q1
VF1 +

q − q1

q2 − q1
VF2,

where we have used q1V1 + q2V2 = qV and V1 + V2 = V.
This expression is simply a common tangent construction: it tells

us that in a certain concentration range between qA and qB the free
energy can be further minimized if the system is separated into an
isotropic phase of concentration qA and the nematic phase of con-
centration qB. For q < qA the solution is isotropic and for q > qB
it is nematic. An Onsager trial function predicts qA = 4.5/LD2,
qB = 5.72/LD2, and qN = 5.1/LD2 [22]. A more accurate method
gives qA = 4.19/LD2, qB = 5.37/LD2, and qN = 4.44/LD2 [23].

Note that the Onsager theory does not describe the bulk equation
of state perfectly. The reason for this is the truncation of the
virial expansion of the free energy at the leading, pairwise term:
Onsager’s results are applicable only for small volume fractions,
0 = qpD2L/4 � 1. However, systematic improvements are possi-
ble and help to achieve a better agreement with the bulk equation of
state [24–27].

8. Optical properties

In the uniaxial nematic, the dielectric susceptibility is a second-
rank tensor with two eigenvalues, 4‖ and 4⊥, which are the suscep-
tibilities per unit volume along and perpendicular to the director,
respectively,

4ij = 4⊥dij + 4aninj.

Correspondingly, it is possible to introduce ordinary and extraor-
dinary refractive indexes,

ne =
√
4‖, no =

√
4⊥, Dn = ne − no.

For typical nematic liquid crystals, no is approximately 1.5 and Dn
varies in the range between 0.05 and 0.5.

When a light beam enters a birefringent material, such as a
nematic liquid crystal sample, it splits into ordinary and extraor-
dinary rays. The two rays travel at different velocities and get out
of phase. When these rays recombine after exiting the birefringent
material, the polarization state of the light beam is a function of the
phase difference. The length of the sample is therefore an important
parameter: the phase shift accumulates as long as the light prop-
agates in the birefringent material. Any polarization state can be
produced with the right combination of the birefringence and length
parameters.

Reflections at the layer boundaries and spatial variations of the
optical axis complicate the description of light propagation in a liq-
uid crystal. Here we use the 2 × 2-matrix formalism [28,29], though
the 4 × 4 technique [30] is better suited for solving complicated
reflection and transmission problems, especially on a computer.

In experimental setups, a liquid crystal sample is often placed
between crossed polarizers. We adopt this geometry and assume
that the first polarizer forms an angle a with respect to the director,
as depicted in Fig. 11. The linearly polarized light after this polarizer,

Ein =
(

Ex

Ey

)
=

(
E0 cosa
E0 sina

)
,
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Fig. 11. Light traveling through a birefringent medium will take one of two paths,
ordinary or extraordinary, perpendicular or parallel to the director, depending on its
polarization.

becomes elliptically polarized after passing through the sample,

Elc(z) =
(

Ex exp(ikez)
Ey exp(ikoz)

)
.

Therefore, once the ray reaches the second polarizer, it has a
component that can pass through it.

Using the Jones calculus for the optical polarizer

Â =

(
sin2

a − cosa sina

− cosa sina cos2a

)
,

we obtain the light field,

Eout = ÂElc(z = d)

= E0 sin(2a) sin
Dkd

2
exp

i(ko + ke)d
2

(
sina

cosa

)
,

and the output light intensity behind the analyzer

∣∣Eout
∣∣2 = E2

0sin2(2a)sin2 Dkd
2

= I0sin2(2a)sin2 pDnd
k

.

Hence, the phase shift determines the intensity of the transmit-
ted light. For monochromatic light, the phase difference, pDnd/k, is
determined by the thickness of the sample d and the birefringence of
the material Dn. If the sample is very thin, the ordinary and extraor-
dinary components do not get very far out of phase. If the phase
difference equals 2p, the wave returns to its original polarization
state and is blocked by the second polarizer. If the transmission axis
of the first polarizer is parallel to either the ordinary or extraordi-
nary directions, the light is not broken up into components, and no
change in the polarization state occurs. In this case, a = 0 or p/2,
there is no transmitted component and the region appears dark.

In a typical liquid crystal, the birefringence varies through the
sample. This means that some areas appear light and others appear
dark, as in the image of the texture in Fig. 2 (a). The light and dark
areas denote regions of differing director orientation, birefringence,

and thickness. Birefringence can lead to multicolored images of liq-
uid crystals in a polarized white light. Color patterns observed under
the polarizing microscope can help to identify the textures of liq-
uid crystal phases. To understand the origin of colors observed when
liquid crystals are placed between crossed polarizers, it is helpful to
consider the example of retarding plates. They are designed for a
specific wavelength and thus will produce the desired results for a
relatively narrow band of wavelengths around that particular value.
For example, if a full-wave plate, designed for a wavelength k, is
placed between crossed polarizers at some arbitrary orientation and
illuminated by white light, the wavelength k will not be affected by
the retarder and will be absorbed by the analyzer. However, all other
wavelengths will experience some retardation and emerge from the
full wave plate in a variety of polarization states. The components
of this light which passed through the analyzer will then form the
complementary to k colors.

9. Response to external fields

The quintessential property of liquid crystals is that the director
field is easily distorted by magnetic and electric fields as well as by
substrates of the cell. This effect is due to a large anisotropy of their
susceptibility tensors, which is again due to the anisotropic shape
and susceptibility of molecules.

In the uniaxial case, the magnetic susceptibility is a second-rank
tensor with two components w‖ and w⊥, which are the susceptibil-
ities per unit volume along and perpendicular to the director. The
susceptibility tensor can therefore be written as

wij = w⊥dij + waninj,

where wa = w‖ − w⊥ is the anisotropy which is generally positive.
The presence of a magnetic field H results in an extra term in the free
energy,

gm = − 1
2
wijHiHj = − 1

2
w⊥H2 − 1

2
wa(n • H)2.

The first term is usually omitted since it does not depend on the
orientation of the director. The second term gives rise to a torque: if
wa is positive the molecules will align parallel to the field.

The dielectric susceptibility of a liquid crystal is also anisotropic
and has the same form as the magnetic susceptibility. In an electric
field E there will be an additional free energy

ge = − 1
8p

4⊥E2 − 1
8p

4a(n • E)2.

In principle, the same director reorientation can be achieved
either with an electric or a magnetic field. In practice, the alignment
of a liquid crystal by an electric field is complicated by the presence
of conducting impurities, necessitating the use of alternating electric
fields.

9.1. Fréedericksz transition in nematics

To illustrate the director response to the external magnetic or
electric fields, let us consider a nematic liquid crystal oriented by
two glass substrates, as shown in Fig. 12. The interaction between
the nematic and the substrates is such that the director is aligned
along the substrate normals. Experimental observations tell us that
if a magnetic field is applied perpendicular to the director and its
magnitude exceeds a certain critical value, the optical properties
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Fig. 12. The geometry of the Fréedericksz transition. The liquid crystal is perpendic-
ular to the substrates, while the magnetic field is parallel to them. (a) Below a certain
critical field Hc , the alignment is not affected. (b) Slightly above Hc , the deviation of
the alignment sets in. (c) Once the field becomes stronger, the deviation increases.

of the system change abruptly. The reason is that both the mag-
netic field and the boundaries exert torques on the molecules. When
the field exceeds certain critical value Hc, it becomes energetically
favorable for the molecules in the bulk of the sample to turn in the
direction of the field. This effect was first observed by Fréedericksz
and Repiewa [31,32] and can be used to measure nematic elastic
constants.

Let us assume that the z axis is perpendicular to the glass sub-
strates and the field H is oriented along the x direction, so that the
perturbation of the director field occurs only in this direction. The
director components then read

nx = sin h, ny = 0, nz = cos h,

where h is the angle between the director and the z axis. The elastic
energy per unit area, Eq. (7), takes the following form:

g =
1
2

∫ d/2

−d/2
dz

[(
k11sin2

h + k33cos2h
)(

∂h

∂z

)2

− waH2sin2
h

]
, (14)

where d is the thickness of the sample.
In the undistorted case, h = 0, the field does not exert any torque

on molecules, which are in a metastable equilibrium. To obtain an
analytical solution above the critical field, we use the one-constant
approximation, k11 = k33 = k, and introduce the magnetic coher-
ence length n =

√
k/waH2. The length n can be interpreted as a

deformation length of the liquid crystal in the presence of an order-
ing field. It appears in many problems involving distortions produced
by a magnetic field [11,12,33].

The free energy density, Eq. (14) then reads

g =
1
2

k
n2

∫ d/2

−d/2
dz

[
n2

(
∂h

∂z

)2

− sin2
h

]
.

Variation of this free energy leads to the Euler-Lagrange equation

n2 ∂2h

∂2z
+ sin h cos h = 0. (15)

The solution of this equation should satisfy the boundary
conditions

h
∣∣
z=−d/2,d/2 = 0.

For fields weaker than Hc only the trivial solution exists and there
is no distortion on the nematic structure, h = 0. For larger fields, if
the maximum distortion hm is small, sin h cos h ≈ h, and h = hm cos z

n

is an approximate solution. The boundary conditions require that
d = np, or, equivalently,

Hc =

√
k
wa

p

d
. (16)

In fact, this relation holds even if k11 �= k33, in which case k should
be substituted with k33. Provided that wa is known, the measurement
of Hc can be used to determine k33.

The general solution to Eq. (15) can also be found in a closed form.
The first integral of the Euler-Lagrange equation reads

n2
(

∂h

∂z

)2

+ sin2
h = sin2

hm,

where the constant of integration has been identified by observing
that dh/dz = 0 when h is at its maximum value, hm. This maximum
distortion lies halfway between the glass surfaces, at z = 0. Further
integration gives

1
2

d − z = n

∫ h

0

dh′(
sin2

hm − sin2
h′
)1/2

= n csc hmF(csc hm, h),

where F is the incomplete elliptic integral of the first kind, csc h =
1/sin h, and we have used the boundary condition h = 0 at z = ± 1

2 d.
The maximum distortion is found by substituting z = 0, h = hm,

1
2

d = n csc hmF(csc hm, hm) = nK(sin hm),

where K is the complete elliptic integral of the first kind.
For fields just above Hc

hm ∼ 2
(

H
Hc

− 1
)1/2

.

The director profiles as well as exact and approximate dependen-
cies of hm on H are shown in Fig. 13.

Fréedericksz’s transition is easy to observe optically, since the
average refractive index of the material changes when the magnetic
field is applied. For the light beam polarized along the x axis in the
geometry shown in Fig. 12, the local refractive index reads

n(z) =
neno(

n2
e sin2

h + nocos2h
)1/2

,

and the average difference in the optical lengths of the ordinary and
extraordinary waves is

Dn =
1
d

∫ d/2

−d/2
dz [n(z) − no] . (17)
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Fig. 13. Dependence of the maximum distortion angle in the middle of the cell, hm ,
on the external field H. The dashed line corresponds to the approximate solution. The
inset shows the profiles of the director deviations in the cell for different field values.

Using Eq. (15), this can be rewritten as

Dn
ne

= 1 − 2n
d

∫ hm

0

dh

(1 + msin2
h)1/2

(
sin2

hm − sin2
h
)1/2

= 1 − 2n
d

1(
1 + msin2

hm

)1/2
K

(
1 + m

csc2hm + m

)
,

where m =
(
n2

e − n2
o
)
/n2

o . For small deformations the change in the
refractive index is

Dn = nem
H − Hc

Hc
(18)

and for large fields approaches ne − no.
Fréedericksz’s transition can be used to build the simplest liquid

crystal display: since the optical properties of the cell depend on the
reorientation of the director, the color of a pixel can be controlled
by applying a voltage. A practical implementation of this idea will be
discussed in Section 15.

10. Charge transport

Liquid crystalline compounds often contain p-conjugated
segments, such as fused benzene and cyclopentadiene rings.
Triphenylene, which is shown in Fig. 3, is a typical columnar liquid
crystal with a conjugated core and solubilizing alkyl side chains. The
delocalized p-orbitals of conjugated segments can easily donate or
accept electrons, facilitating charge transfer reactions. Intermolecular
charge transfer leads to charge transport, rendering these materials
as organic semiconductors [34,35]. In their pristine state, however,
organic semiconductors are insulators and become semiconduct-
ing only upon charge injection – from electrodes, by doping, or by
photoexcitation.

Dependingonthemoleculararrangementandtemperature,charge
transport in liquid crystalline semiconductors can be band-like,
disorder-limited, or thermally activated. Different transport regimes
manifest themselves in different values and temperature dependen-
cies of charge carrier mobility. The exponential increase of mobility

with temperature, for example, indicates that transport is ther-
mally activated. In this regime charges are localized and the transfer
rate between these localized (diabatic) states can be approximated
as [36,37]

kA→B =
2p
�

J2
AB√

4pkkT
exp

[
− (DUAB − k)2

4kkT

]
.

This, so-called Marcus, rate depends on three microscopic
parameters, namely the reorganization energy k, the electronic cou-
pling JAB, and the driving force DUAB = UA − UB, all of which can
be evaluated using quantum-chemical methods, classical polarizable
force-fields, or quantum-classical hybrid methods [38].

The reorganization energy k quantifies how much the geometry
of the charge transfer complex and its environment adapts while the
charge is transferred. The reorganization energy can be estimated
based on four points on the diabatic potential energy surfaces,

kA→B = Ua,A − Ua,a + UB,b − UB,B,

where Ua,B refers to the total energy of the molecule in state a and
geometry B.

The electronic coupling JAB is intimately related to the molecular
overlap and therefore is very sensitive to relative positions and ori-
entations of neighboring molecules. Correspondingly, charge carrier
mobility varies from mesophase to mesophase. As a rule of thumb,
more ordered mesophases have higher mobilities. Electronic cou-
pling elements can be evaluated using semiempirical [39,40] or more
accurate projection [41] methods.

The driving force DUAB includes an internal contribution, namely
the gas-phase electron affinity for electrons or ionization potential for
holes. This contribution can vary from one molecular pair to another
because of different energy levels for different types of molecules, or
different conformers of the same molecule. The external contribution
is due to the electrostatic and the induction interactions of a charge
with the environment and is the most difficult to evaluate because the
underlying interactions are long-ranged. To self-consistently account
for both the electrostatic and the polarization effects, classical models
are normally employed such as the polarizable force-fields [42,43].

In highly ordered systems with large electronic couplings the
hopping picture breaks down. Charges delocalize and transport
becomes limited by the dynamic disorder [44–46]. Furthermore, sin-
gle crystals at low temperatures exhibit band-like charge transport
with mobilities as high as tens cm2/V s.

In line with mechanical properties, charge mobility in liquid
crystals is often anisotropic. In columnar liquid crystals it is prac-
tically one-dimensional. The presence of a strong p-stacking direc-
tion inhibits other transport directions [47,48], since even a few
defects can block charge drift along a column [49–51]. The lamellar
arrangements of smectic liquid crystals, on the other hand, provide
a two-dimensional transport network, ideally suited for field effect
transistors. Semiconducting properties of liquid crystals have found
their application in organic solar cells and field effect transistors [52].

11. Anchoring effects

The anchoring phenomenon is the tendency of liquid crystal
molecules to orient themselves in a particular direction on the cell
substrates. This orientation is called the easy orientation axis, e. If the
interaction of molecules with the substrate is strong, the director on
this substrate always coincides with the easy orientation axis. This is
termed strong anchoring. If this coupling is finite, the surface direc-
tor deviates from the easy axis when, for example, an external field is
applied. Orientation of the director perpendicularly to the substrate
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is called homeotropic. Tangential, or planar, orientation implies that
the director is parallel to the substrate.

Theoretical investigations of anchoring started with the early
works on planar anchoring on grooved substrates [53]. On the phe-
nomenological level, anchoring can be accounted for by adding a
surface term to the total free energy of the system. The simplest form
of the surface free energy was proposed by Rapini and Papoular [54],

Fs = − 1
2

W
∫

(n • e)2dS, (19)

where the parameter W is the anchoring energy and e is a unit
vector along the easy axis. These two parameters are critical for
designing liquid crystal devices. A number of generalizations of
the Rapini-Papoular potential were proposed [55], among them the
generalization to the tensorial form,

Fs = − 1
2

WTr(Q |S − Q s)
2,

where Q s is the value of the order tensor preferred by the surface
and W is the anchoring energy. In case of uniaxial surface anchoring,
Qs,ab = Ss

(
eaeb − 1

3dab

)
.

Numerous experimental and theoretical methods were devel-
oped to measure the surface anchoring coefficient [56–62]. Available
experimental data show that the length k = k33/W is inversely pro-
portional to the squared value of the bulk order parameter k ∝ S2.
Taking into account that the elastic constant k33 is proportional to
S2, we find W ∝ S4 for the anchoring parameter. Hence, anchoring
strength can be efficiently controlled by temperature.

Most of the experimental methods measure surface director
deviations in an external field and involve rather complicated opti-
cal setups. One of the simplest measurements of weak azimuthal
anchoring strengths can be performed in a wedge cell with a twisted
distribution of the director [60], as shown in Fig. 14. The easy axis on
the reference substrate, where strong anchoring is assumed, makes
an angle a with respect to the easy axis on the test substrate. The
director orientation on the test substrate, 0t, can be found from the
condition sin0t = n

2 sin 2(a − 0t), where n = Wd/k22, and d is the
cell thickness. In a wedge cell d varies in the range ∼0–50 lm. For
a = p/4 the explicit solution to this equation is

sin0t =
1
2

(√
2 + n−2 − n−1

)
.

Fig. 14. Geometry of the wedge cell. The angle between the easy axis on the reference
(er) and the test (et) substrates is a. The director n deviates from the test substrate
easy axis by an angle 0t .

If the polarizer is parallel to the easy axis on the reference sub-
strate and the analyzer is oriented at an angle c with respect to the
polarizer, the light intensity behind the analyzer reads [63]

T =
1
2

(1 + Tc cos 2c + Ts sin 2c) ,

Tc =
(

u − 1
u + 1

sin2
h + cos2h

)
cos 20t +

sin 2h√
u + 1

sin 20t

Ts =
(

u − 1
u + 1

sin2
h + cos2h

)
sin 20t − sin 2h√

u + 1
cos 20t

u =
(
pDnd
k0t

)2

, h = 0t

√
u + 1.

The minimum of the transmission intensity is then given by

cA =
1
2

arctan
Ts

Tc
,

and is shown as a function of the cell thickness d in Fig. 15 for differ-
ent values of anchoring strengths. This dependence can, of course, be
measured in a single wedge cell. Though this method is only suitable
for anchoring strengths of up to 10−2 erg/cm2, its range and accuracy
can be improved by using a magnetic field to control deviations of
the director from the orientation of the easy axis [60].

12. Defects

Topological defects appear in physics as a consequence of a bro-
ken continuous symmetry [3]. They exist almost in every branch of
physics: biological systems, superfluid helium, ferromagnets, crys-
talline solids, liquid crystals [64–67], quantum Hall fluids, and even
optical fields [68], playing an important role in such phenomena as
a response to external stresses and the nature and type of phase
transitions. They even arise in certain cosmological models [69].

Liquid crystals are ideal materials for studying topological defects.
Distortions yielding defects are easily produced through control of
boundary conditions, surface geometries, and external fields. The
resulting defects are easily imaged optically. The nematic liquid crys-
talline mesophase owes its name to the typical threadlike defect

Fig. 15. Orientation of the analyzer which gives the minimum of the transmitted
light intensity for different values of surface anchoring W. Dn = 0.1, k = 0.5 lm,
k22 = 3.6 × 10−7 erg/cm. Gray dotted lines show the director orientation at the
substrate with finite anchoring (0t), thus illustrating deviations from the Mauguin
regime.
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which can be seen under a microscope in nematic and cholesteric
phases [70].

First explanations of defects were given by Friedel [71], who sug-
gested that these threads correspond to lines on which the director
changes its direction discontinuously. In analogy with dislocations
in crystals, Frank proposed calling them disclinations. To classify
topological defects the homotopy theory can be employed [72]. In
nematics, two types of stable topological defects in three dimensions
exist: point defects, or hedgehogs, and line defects, or disclinations.
Hedgehogs are characterized by an integer topological charge q,
which specifies the number of times the unit sphere is wrapped by
the director on any surface enclosing the defect core

q =
1

8p

∫
dSi4ijkn •

(
∂jn × ∂kn

)
,

where ∂a denotes differentiation with respect to xa , 4ijk is the Levi-
Civita symbol, and the integral is over any surface enclosing the
defect core. For an order parameter with an O3 (vector) symmetry,
the order-parameter space is S2, and hedgehogs can have positive or
negative charges. Nematic inversion symmetry implies that positive
and negative charges are equivalent.

The axial solutions of the Euler-Lagrange equations representing
disclination lines are

0 = mh + 00,

where

nx = cos0, x = r cos h,

ny = sin0, y = r sin h,

and h is the azimuthal angle (polar coordinates), m is a positive or
negative integer or half-integer [2].

The director field around disclinations can be readily found from
the condition

dy
dx

= tan(mh + 00) or
1
r

dr
dh

= cot[(m − 1)h + 00],

which can be integrated in polar coordinates, yielding

(
r
r0

)m−1

=
sin[(m − 1)h + 00]
sin[(m − 1)h0 + 00]

.

Examples of disclinations for several m are shown in Fig. 16.
The elastic energy per unit length associated with a disclination

is pKm2ln(R/r0), where R is the size of the sample and r0 is a lower
cutoff radius, or the size of the disclination core [2]. Since the elas-
tic energy is proportional to m2, the formation of disclinations with
large Frank indices m is energetically unfavorable.

Within the continuum Frank theory, disclinations are singular
lines where the director gradients become infinite. This inevitably
leads to a breakdown of the Frank-Oseen theory. The region near
the singularity where this theory fails is called the disclination core.
The phenomenological elastic theory predicts that a uniaxial nematic
either melts or exhibits a complex biaxial structure in the core
region [73]. Therefore, the core of the defect cannot be represented
by the director field only, implying that biaxiality and variation of the
order parameter should also be taken into account. For this reason, a
more general theory based on the alignment tensor, Eq. (1), should be
applied to provide the correct description of the core region [74–79].

A number of books and reviews are available on topological
defects in liquid crystals and can be recommended for further read-
ing [4,5,80].

13. Liquid crystal colloids

Long-range orientational ordering of molecules in liquid crys-
talline mesophases manifests itself in anisotropic mechanical prop-
erties of liquid crystals. If a liquid crystal is used as a host liquid in a
colloidal suspension, this ordering gives rise to long-range anisotropic
interactions between colloidal particles. Particle clustering, for-
mation of superstructures, and even new phases are immediate
consequences of these interactions.

To review the hierarchy of such interactions, we must first exam-
ine the director field around one particle suspended in a nematic
host. The long-range interaction energy of two or more particles will
follow directly from the dominant multipole moment of this director
field, or its symmetry.

13.1. Defects around a colloidal particle

Two factors influence the director field around a colloidal particle:
the particle size and the director orientation at its surface. A particle
with a sufficiently strong homeotropic anchoring carries a topological
charge of strength +1. If far away from the particle the director field
is uniform, the total topological charge of the system is zero. To com-
pensate the topological charge of the particle, an additional defect is
created in the nematic. Depending on the particle size, two types of
defects are observed. A satellite defect is a point defect with the topo-
logical charge of −1. Far from the particle, the director field of this
particle-defect pair has dipolar symmetry, and two particles with such
defects interact as a pair of dipoles. The other defect type is a −1/2
strength disclination ring that encircles the particle, or a Saturn-ring
defect. This defect accompanies small colloids, has quadrupolar sym-
metry, and results in quadrupole-quadrupole interactions between
colloids. Both types of defects are sketched in Fig. 17.

Experiments [81] as well as theories based on the Frank-Oseen
elastic free energy [65,67,82,83] predict that the micron-sized parti-
cles stabilize the dipolar configuration. This defect can also acquire a
director twist for large ratios of twist to splay elastic constants [82].
The Saturn-ring defect becomes a global minimum of the free energy
once the particle size is reduced. The most stable position of the ring
is in the equatorial plane, normal to the far-field director. By reduc-
ing the surface anchoring we can also stabilize a surface-ring director
configuration [82,84].

13.2. Effective pair interactions

Experimenting with inverted nematic emulsions, Poulin et al.
noticed that water droplets dispersed in a nematic solvent form lin-
ear chains that break upon the transition to the isotropic phase [85].
Droplet chaining is a clear manifestation of the long-range dipolar and
short-range repulsive interactions [86]. Both dipolar and quadrupolar
colloidal forces were measured directly using ferrofluid droplets in a
magnetic field [87], magneto-optic tweezers [88–90], iron particles
in a magnetic field [91], and dual-beam optical tweezers [92–94].

At large separations, nematic-mediated interactions between col-
loids can be directly related to a multipole expansion of the electro-
static interaction [65,95]. Indeed, in the one-constant approximation,
the Frank-Oseen elastic free energy of small director deformations
around the z-axis, n(r) = (nx, ny, 1), can be written as

F � k
2

∫
dr

[
(∇nx)2 + (∇ny)2)

]
.

Hence, far from the colloid the transverse director components,
nx and ny, satisfy the Laplace equation. For a single particle, the
solutions of this equation can be expanded into multipoles. Using the
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Fig. 16. Examples of axial disclinations in a nematic: with a topological charge, m = +1; the parabolic disclination, m = +1/2; and the hyperbolic disclination (topologically
equivalent to the parabolic one), m = −1/2.

superposition principle, we can then obtain explicit expressions for
the effective pair potential

Vdipl-dipl ∝
(

1 − 3cos2h
)

d−3,

Vquad-quad ∝
(

9 − 90cos2h + 105cos4h
)

d−5,

Vdipl-quad ∝ cos h(15cos2h − 9)d−4,

where d is the distance between the particles and h is the angle
between the far field orientation of the nematic director and the
vector connecting the centers of the colloidal particles. These expres-
sions can be generalized for particles of arbitrary shapes [96–98],
weak anchoring at a particle surface [67], and different elastic con-
stants [99].

The direct experimental measurements with optical tweez-
ers confirmed the d−4 decay for two parallel (h = 0)
dipoles [92-94,100]. However, for the antiparallel dipoles, the repul-
sive force decayed as d−3.6 [94] and could be explained only by the
direct integration of the stress tensor [101]. The d−5 decay of the
dipole-quadrupole attraction (h = p) was also observed experi-
mentally [102]. The quadrupolar, d−6, tail was measured for colloidal
particles with the tangential boundary conditions [88,103].

The electrostatic analogy of the linearized Frank-Oseen free
energy in the one-elastic-constant approximation provides a valu-
able insight into assemblies of particles. Dipolar interactions pro-
mote long chains of colloids [100], while quadrupolar [104] or
mixed [102,105] defects favor rhomboidal structures, in agreement
with the angular dependences of interaction potentials.

At small interparticle separations, nonlinear effects become
important: two Saturn rings can merge into one, repulsive forces can
become attractive [106], etc. Many-body effects and nonlinearities

Fig. 17. Cross-sections of the director fields for the dipolar satellite and quadrupolar
Saturn-ring defects accompanying a spherical colloid with homeotropic anchoring.

require descriptions which go beyond the linearized theory and the
superposition approximation. Numerical minimization of the Frank-
Oseen [82,107,108] or Landau–de Gennes free energy [101,109-116],
molecular dynamics [76-79,117], Monte Carlo [67], and classical den-
sity functional theory [118,119] are often used to study short-range
interactions.

13.3. Colloids at a nematic-isotropic interface

Liquid-liquid interfaces provide an additional way of controlling
colloidal assembly. In liquid crystals, a variety of ordered patterns
can be observed at liquid-liquid interfaces [120–122]. The type and
degree of ordering can be controlled by adding a molecular surfac-
tant. For example, the addition of an anionic surfactant SDS to the
liquid crystal 5CB triggers the formation of two-dimensional arrays
with local hexagonal symmetry [122]. By doping the emulsion with
a photosensitive amphiphilic dye we can control the nematic-air
surface tension, the anchoring on the surface of droplets, and elas-
tic constants of the host and hence manipulate the lattice constant
of the two-dimensional hexagonal crystal formed by the glycerol
droplets at the nematic-air interface [123]. By irradiating the emul-
sion with spatially-modulated light we can even obtain patterned
two-dimensional colloidal crystals. More exotic situations include
the coexistence of different two-dimensional assemblies of glyc-
erol droplets at a nematic-air interface, which can be controlled by
reorientation of elastic dipoles around each droplet [124].

Apart from controlling the assembly of particles at interfaces, it is
also possible to use nematic-isotropic interfaces for ordering colloids
into three-dimensional structures. For example, we can obtain cellu-
lar solids by dispersing colloidal particles in the isotropic phase of a
liquid crystal and then quenching it below the NI transition temper-
ature [125,126]. Colloidal particles, densely packed at thin interfaces
between different nematic domains, form an open cellular struc-
ture with a characteristic domain size of 10–100 lm. The size of the
domains can be controlled by changing the particle concentration.
Due to the cellular morphology, such gel-like solids have a remark-
ably high elastic modulus, which varies linearly with the particle
concentration [127].

When a colloidal particle is captured by a NI interface, it can be
dragged by it. The speed of a moving NI interface controls the struc-
tural organization of colloidal particles. Periodic, stripe-like struc-
tures can be obtained, with the period depending on particle mass,
size, and interface velocity [128–130]. The speed of the interface, the
magnitude of the applied electric field, particle size, density and its
dielectric properties control which particles can be moved and which
are left behind. From a theoretical point of view, we can think of two
origins of anisotropic interactions between particles pinned at the
interface. First, the director deformations extend into the nematic
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phase, i.e. in addition to the interfacial energy, the bulk elasticity con-
tributes to the total free energy of the system. Second, the effective
surface tension depends on the orientation of the director and hence
varies along the interface due to the presence of colloidal particles.

Long-range elastic effects complicate our understanding of inter-
particle interactions at NI interfaces: expressions for the free energy or
force-distance profiles can hardly be obtained analytically, especially
for small separations, when many-body effects are important. For
homeotropic anchoring, asymptotic analysis predicts that the elastic
interaction is quadrupolar, repulsive, and decays with the distance
as (R/d)−5 [131,132]. Numerical calculations are also not straight-
forward. The interfacial width and the size of the defect core are
normally much smaller than the size of a colloidal particle. Such dis-
parate length-scales require solvers with adaptive meshes [133–135]
and are reviewed in Ref. [106].

14. Computer simulation of liquid crystals

Computer simulations of liquid crystalline mesophases employ
models of different complexity. Atomistic simulations, for example,
use classical potentials to model inter- and intramolecular inter-
actions. With their help we can link macroscopic properties of
mesophases to their chemical composition [136]. To understand
generic properties of liquid crystals, it is often sufficient to use
coarse-grained models which lack chemical specificity but offer com-
putational efficiency. Here we review one such model which is
based on the anisotropic version of the Lennard–Jones potential, the
Gay–Berne potential [8].

14.1. Molecular dynamics of non-spherical particles

Classical molecular dynamics is a numerical technique which
solves the Newton’s equations of motion for a system of molecules
interacting via a given potential, vij. Since liquid crystal molecules
have an elongated shape, the integration schemes should take into
account orientational degrees of freedom, in addition to the trans-
lational ones. For a linear molecule with two equal and one zero
principal moments of inertia, the angular velocity and the torque are
both perpendicular to the molecular axis. If ei is a unit vector along
the molecular axis, then the torque on a molecule can be written as

ti = ei × gi = ei × g⊥
i ,

where gi = −∇ei vij is a “gorque” to be determined from the
intermolecular forces. The vector gi can always be replaced by its
component perpendicular to the molecular axis, g⊥

i = gi − (gi • ei)ei.
The equations for rotational motion can be written as two first-

order differential equations [8],

ėi = ui,

u̇i = g⊥
i /Ii + kei, (20)

where Ii is the moment of inertia, k is a Lagrange multiplier which
constrains the molecule length.

The equations of rotational motion and the Newton’s equation of
motion,

mir̈i = f i, (21)

describe completely the dynamics of motion of a linear molecule. To
solve these equations numerically, we have to adopt a proper dis-
cretization of them. Since the original equations of motion are time
reversible, the discretized system has to be time reversible and con-
serve energy. Many discretizations fulfill these criteria: a quaternion

algorithm [137], a rotation matrix algorithm, involving equations for
Euler angles [8], a Gear predictor-corrector method [138]. The most
widely used are the leap-frog and the velocity-Verlet algorithms [8].
The approach we describe here uses the leap-frog method [139].

To solve the equation for motion of the center of mass of
molecules (Eq. (21)) using the leap-frog algorithm, we advance the
velocities by half a step, using current accelerations a(t) and the pre-
vious velocities v

(
t − 1

2Dt
)

. Then the velocities and a new set of
forces are calculated,

r (t + Dt) = r(t) + Dtv
(

t +
1
2
Dt

)
,

v
(

t +
1
2
Dt

)
= v

(
t − 1

2
Dt

)
+ Dta(t).

To evaluate the kinetic energy at time t the current velocities for
time t can be calculated using

v(t) =
1
2

[
v
(

t +
1
2
Dt

)
+ v

(
t − 1

2
Dt

)]
.

Prior to solving the equation for rotational motion (Eq. (20)),
a Lagrange multiplier k has to be determined. By considering the
advancement of coordinates over half a time step,

ui = ui

(
t − 1

2
Dt

)
+

1
2
Dt

[
g⊥

i (t)/I + k(t)ei(t)
]
.

and taking the scalar product of both sides with the vector ei(t), we
obtain

k(t)Dt = −2ui

(
t − 1

2
Dt

)
• ei(t).

We can now calculate u̇i(t) from Eq. (20) and then advance a full
step in the integration algorithm,

ui

(
t +

1
2
Dt

)
= ui

(
t − 1

2
Dt

)
+ Dtu̇i(t).

The step is completed using

ei(t + Dt) = ei(t) + Dtui

(
t +

1
2
Dt

)
.

14.2. Forces and torques

To complete the problem, we have to derive forces and torques
from the pairwise inter-particle potential vij(rij, ei, ej). If the centers
of molecules are separated by a vector rij and the molecular axes are
oriented along unit vectors ei and ej, then the force on molecule i due
to j reads

f ij = −∇rij vij.

Using the chain rule, we obtain

f ij = −
(

∂vij

∂rij

)
∇rij rij −

∑
a=i,j

(
∂vij

∂
(
nij • ea

)
)

∇rij

(
nij • ea

)
,

where nij = rij/rij.
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Taking into account that

∇rij

(
nij • ea

)
= − (

nij • ea
) rij

r2
ij

+
ea
rij

,

where a = i, j we obtain

f ij = −
(

∂vij

∂rij

)
nij −

∑
a=i,j

(
∂vij

∂
(
nij • ea

)
)(

ea
rij

− rij

(
nij • ea

)
r2

ij

)
.

To evaluate the torque on molecule i due to molecule j

tij = −ei × ∇ei vij

we again apply the chain rule, and obtain

tij = −ei ×
[

rij

rij

(
∂vij

∂
(
nij • ei

)
)

+ ej

(
∂vij

∂
(
ei • ej

)
)]

.

We can see that fij = −fji but tij �= −tji.
Equations for forces and torques are the key ingredients of any

molecular dynamics algorithm. To proceed further, we have to com-
plement them with the pair interaction potential vij.

14.3. Gay–Berne intermolecular potential

The most widely used pair potential for coarse-grained liquid
crystal simulations is the Gay–Berne potential, an extension of the
Lennard–Jones potential to an anisotropic pair interaction [140,141],

vij = 4e
(
q−12 − q−6

)
,

where q = [rij − s + s s]/s s.
The molecular shape parameter s and the energy parameter

4 depend on the molecular unit vectors ei, ej as well as on the
separation vector nij between the pair of molecules,

(
ss

s

)2

= 1 − w

2
[
n(w, +1) + n(w, −1)

]
,

e

es
= (e′)l(e′′)m ,

where

n(w, s) =

(
ei • nij + sej • nij

)2

1 + swei • ej
,

e′ = 1 − w′

2
[
n(w′, +1) + n(w′, −1)

]
,

e′′ =
[
1 − w2(ei • ej

)2
]−1/2

.

Here w and w′ denote the anisotropy of the molecular shape and
of the potential energy surface, respectively,

w =
j2 − 1
j2 + 1

, w′ =
j ′1/l − 1
j ′1/l + 1

.

The most important parameters of the potential are the
anisotropy parameters j and j ′ •j = se/s s is roughly the molec-
ular elongation and the j ′ = es/ee is the well-depth ratio for the
side-by-side and end-to-end configurations. The Gay–Berne poten-
tial describes well generic properties of thermotropic liquid crys-
tals [142]. Different variants of this potential are summarized in
Table 1.

As an illustrative example, a simulation snapshot of two colloids
immersed in a Gay–Berne liquid crystal is shown in Fig. 18. The mean

Table 1
Parameterizations of the Gay–Berne potential.

k k′ l m Reference

3 5 2 1 [143,144]
3 5 1 3 [145]
3 5 1 2 [146]
3 – 0 0 Soft repulsive potential
4.4 20 1 1 [147]

interaction force between these colloids shows that the depletion
forces dominate for small colloidal particles. The tangential compo-
nent of the force can be used to resolve the elastic contribution to
the total interaction and is different from the quadrupolar interac-
tion predicted at large separations. The difference is due to the defect
disposition and annihilation at small separations [117].

14.4. The Monte Carlo technique

Since molecular dynamics becomes computationally inefficient
at low densities, the Monte Carlo approach is the method of choice
for simulating lyotropic liquid crystals. In Monte Carlo simulations,
we begin with some configuration of molecular positions and ori-
entations and then move and rotate molecules to generate trial
configurations. When a trial configuration is generated, the differ-
ence in the potential energy DU = Utrial − Uold between the trial
and old systems is calculated. If DU < 0, the trial configuration
is accepted and the process is repeated. If DU > 0 the Boltzmann
weight j = exp(−DU/kBT) is compared to a random number g ∈
(0 . . . 1]. If g < j, the move is accepted, otherwise it is rejected. If
DU is small, the Boltzmann factor is close to 1 and the acceptance of
the trial configuration is highly probable. As DU increases, the trial
moves become accepted with an ever lower probability. This means
that big fluctuations in the energy are possible, but suppressed, lead-
ing to efficient phase space sampling. In practice, about half of the
trial moves should be accepted [8]. In the Monte Carlo technique,

Fig. 18. Snapshot of molecular dynamics simulations of two long colloids immersed
in a Gay–Berne liquid crystal. 8000 Gay–Berne particles, colloid radius R/s0 = 3,
colloid separation d/s0 = 10. The color coding emphasizes particle orientations.
Source: Adapted with permission from Phys. Rev. E 68, 051702. Copyright American
Physical Society.
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forces and torques are never calculated, only potential energies. As a
consequence, neither real time nor real particle trajectories exist.

The Monte Carlo technique of a canonical (NV T) ensemble can
be adapted to the constant pressure (NPT) ensemble. The vol-
ume changes can be implemented by scaling molecular positions.
The probability function also changes according to the ensemble,
j = exp[−{DU + PDV − NkBTln(1 − DV/V)}/kBT]. Volume changes
are attempted far less often than molecular moves, to ensure that
they are slow compared to molecular motion.

The Metropolis algorithm [148] described above generates config-
urations which are weighted to favor thermally populated states of
the system. A number of important properties, such as free energies,
require substantial sampling over higher-energy configurations. The
non-Boltzmann sampling is more efficient in this case, with the old
and trial states additionally weighted by a suitable function. This
weighting encourages the system to explore regions of phase space
which are not well sampled by the Metropolis method. The weighted
averages are then corrected, giving desired ensemble averages. A par-
ticular example of non-Boltzmann sampling is the umbrella-sampling
technique [8].

Monte Carlo and molecular dynamics simulations have been
used to study various properties of liquid crystals, such as bulk
elastic constants [149–153], viscosities [154,155], helical twisting
power [156,157], parameters of the isotropic–nematic interface [158],
confined geometries [61,62], and topological defects [77,159].

15. Applications

Discovered as early as 1888 [10], liquid crystals were treated as
exotic substances for almost a century. In 1947, a modern transis-
tor was invented. This invention triggered rapid miniaturization of
electronic devices. The need for lightweight, power-efficient displays
revitalized the research of electro-optical properties of liquid crys-
talline materials, and in 1970 Helfrich and Schadt filed a patent for a
twisted nematic field effect. This technology soon grew into a multi-
billion dollar industry [160]. Apart from displays, liquid crystals also
found use in thin-film thermometers and switchable windows. Here,
we explain working principles of these devices and link them to
electro-optical properties of liquid crystals.

15.1. Liquid crystal displays

A single pixel of a twisted nematic display consists of two polar-
izing filters, two transparent electrodes, and a reflecting mirror, as
depicted in Fig. 19. The liquid crystal itself is sandwiched between
the transparent electrodes and is aligned by the substrates in such
a way that there is a p/2 twist of the director in the cell. Before
entering the liquid crystal, the incident light is polarized by the first
polarizer. In the liquid crystal, light polarization follows the director
distribution, which is often referred to as the Mauguin regime. As a
result, its polarization is parallel to the second polarizer. The light
ray is reflected back by the mirror. In this state, the pixel is reflect-
ing light. With the application of a voltage, the twist of the director
becomes distorted reorienting more and more along the field, per-
pendicular to the substrates. The Mauguin regime breaks down, the
polarization of light no longer follows the twist of the director. The
light beam is now blocked by the second polarizer and the pixel is
absorbing light.

This type of cell can be found in old wristwatches, cell phones
and calculator displays. Modern high resolution LCD panels of hand-
held and notebook computers use a white light source instead of
a mirror, and the director in the cell is supertwisted rather than
twisted, improving viewing angle characteristics of the display. A
comprehensive overview of different types of liquid crystals displays
is provided in Ref. [161].

Fig. 19. Twisted nematic cell in its reflecting and absorbing states.

15.2. Liquid crystal thermometers

Chiral nematic or cholesteric liquid crystals reflect light with a
wavelength equal to their pitch. As the pitch is sensitive to tempera-
ture variations, the color of the reflected light depends on tempera-
ture. It is therefore possible to determine temperature just by looking
at the color of the thermometer. By mixing different compounds,
devices for practically any temperature range can be built.

15.3. Polymer dispersed liquid crystals

Polymer dispersed liquid crystals consist of liquid crystal droplets
dispersed in a solid polymer matrix, as shown in Fig. 20. The result-
ing material is a sort of “Swiss cheese” polymer with liquid crystal
droplets filling in the holes. The tiny, only a few microns in diame-
ter, droplets are responsible for the unique behavior of the material.
The intensity of transmitted light can be varied by changing the ori-
entation of the liquid crystal director in the droplets. In the off-state
(no external field), the random orientation of the director in droplets
leads to strong light scattering. The cell appears opaque. When the
voltage is applied, the director aligns with the field, the refractive
index of the liquid crystal matches the one of the matrix, and the cell
becomes transparent.

Though liquid crystals are mostly known for their application in
flat panel displays. their unique properties have been used in a num-
ber of other applications, such as organic electronics (Section 10),
nanoparticle organization and liquid crystal colloids (Section 13), liq-
uid crystal elastomer actuators, as well as chemical and biological
sensors [10,162].

Fig. 20. In a typical polymer dispersed liquid crystal, droplets with different con-
figurations and orientations scatter visible light. When an electric field is applied
the molecules within the droplets align along the field and the material becomes
transparent. In the following diagram, the director orientation is represented by the
black lines on the droplet.
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16. Supporting information

Python notebooks are provided for the following chapters:

• Fréedericksz transition, Section 9.1: Maximum distortion angle
director profiles as a function of the applied magnetic field
(freedericksz.ipynb).

• Defects, Section 12: Axial disclination lines in a nematic
(defects.ipynb).

• Onsager theory, Section 7.3: Distribution functions, order
parameter, rotational and translation entropies, free energy
(onsager.ipynb).

• Maier-Saupe theory, Section 7.2: Distribution functions,
rotational entropy, free energy, order parameter (maier_saupe.
ipynb).

• Anchoring, Section 11: The analyzer position of the minimum
transmission intensity as a function of the cell thickness
(anchoring.ipynb).
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Muševič, M. Škarabot, O.D. Lavrentovich, Coexistence of two colloidal crys-
tals at the nematic-liquid-crystal-air interface, Phys. Rev. Lett. 98 (5) (2007)
057801.

[125] V.J. Anderson, E.M. Terentjev, S.P. Meeker, J. Crain, W.C.K. Poon, Cellular solid
behaviour of liquid crystal colloids. 1. Phase separation and morphology, Eur.
Phys. J. E 4 (1) (2001) 11–20.

[126] M. Roth, M. D’Acunzi, D. Vollmer, G.K. Auernhammer, Viscoelastic rheology
of colloid-liquid crystal composites, J. Chem. Phys. 132 (12) (2010) 124702.

[127] V.J. Anderson, E.M. Terentjev, Cellular solid behaviour of liquid crystal colloids.
2. Mechanical properties, Eur. Phys. J. E 4 (1) (2001) 21–28.

[128] J.L. West, A. Glushchenko, G. Liao, Y. Reznikov, D. Andrienko, M.P. Allen, Drag
on particles in a nematic suspension by a moving nematic-isotropic interface,
Phys. Rev. E 66 (1) (2002) 012702.

[129] J. West*, K. Zhang, A. Glushchenko, Y. Reznikov, D. Andrienko, Drag of micro–
particles by an extended nematic-isotropic interface, Mol. Cryst. Liq. Cryst. 422
(1) (2004) 73–82.

[130] J.L. West, K. Zhang, A. Glushchenko, D. Andrienko, M. Tasinkevych, Y.
Reznikov, Colloidal particles at a nematic-isotropic interface: effects of confine-
ment, Eur. Phys. J. E 20 (2) (2006) 237–242.

[131] M. Oettel, S. Dietrich, Colloidal interactions at fluid interfaces, Langmuir 24 (4)
(2008) 1425–1441.

[132] M. Oettel, A. Domınguez, M. Tasinkevych, S. Dietrich, Effective interactions of
colloids on nematic films, Eur. Phys. J. E 28 (2) (2009) 99–111.

[133] D. Andrienko, M. Tasinkevych, P. Patrício, M.M. Telo da Gama, Interaction of
colloids with a nematic-isotropic interface, Phys. Rev. E 69 (2) (2004) 021706.

[134] D. Andrienko, M. Tasinkevych, S. Dietrich, Effective pair interactions between
colloidal particles at a nematic-isotropic interface, Europhys. Lett. (EPL) 70 (1)
(2005) 95.

[135] M. Tasinkevych, D. Andrienko, Effective triplet interactions in nematic colloids,
Eur. Phys. J. E 21 (3) (2006) 277–282.

[136] M.R. Wilson, D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess, V. Vill, Molecular
modelling, Handbook of Liquid Crystals Set, Wiley-VCH Verlag GmbH. 1998,
pp. 72–86.

[137] D.J. Evans, S. Murad, Singularity free algorithm for molecular dynamics
simulation of rigid polyatomics, Mol. Phys. 34 (2) (1977) 327–331.

[138] P.S.Y. Cheung, J.G. Powles, The properties of liquid nitrogen, Mol. Phys. 30 (3)
(1975) 921–949.

[139] D. Fincham, Leapfrog rotational algorithms for linear molecules, Molecular
Simul. 11 (1) (1993) 79–89.

[140] B.J. Berne, P. Pechukas, Gaussian model potentials for molecular interactions,
J. Chem. Phys. 56 (8) (1972) 4213–4216.

[141] J.G. Gay, B.J. Berne, Modification of the overlap potential to mimic a linear
site–site potential, J. Chem. Phys. 74 (6) (1981) 3316–3319.

[142] M.A. Bates, G.R. Luckhurst, Computer simulation studies of anisotropic
systems. XXX. The phase behavior and structure of a Gay–Berne mesogen, J.
Chem. Phys. 110 (14) (1999) 7087–7108.

[143] E. de Miguel, L.F. Rull, M.K. Chalam, K.E. Gubbins, Liquid crystal phase diagram
of the Gay-Berne fluid, Mol. Phys. 74 (2) (1991) 405–424.

[144] E. de Miguel, L.F. Rull, K.E. Gubbins, Dynamics of the Gay-Berne fluid, Phys.
Rev. A 45 (6) (1992) 3813–3822.

[145] R. Berardi, A.P.J. Emerson, C. Zannoni, Monte Carlo investigations of
a Gay–Berne liquid crystal, J. Chem. Soc. Faraday Trans. 89 (22) (1993)
4069–4078.

[146] G.R. Luckhurst, R.A. Stephens, R.W. Phippen, Computer simulation stud-
ies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model
mesogen, Liq. Cryst. 8 (4) (1990) 451–464.

[147] M.A. Bates, G.R. Luckhurst, Computer simulation studies of anisotropic sys-
tems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant
pressure, J. Chem. Phys. 104 (17) (1996) 6696–6709.

[148] N. Metropolis, S. Ulam, The Monte Carlo method, J. Am. Stat. Assoc. 44 (247)
(1949) 335–341.

[149] M.P. Allen, D. Frenkel, Calculation of liquid-crystal Frank constants by com-
puter simulation, Phys. Rev. A Gen. Phys. 37 (5) (1988) 1813–1816.

[150] D.J. Cleaver, M.P. Allen, Computer simulations of the elastic properties of liquid
crystals, Phys. Rev. A 43 (4) (1991) 1918–1931.

[151] N.H. Phuong, G. Germano, F. Schmid, Elastic constants from direct correla-
tion functions in nematic liquid crystals: a computer simulation study, J. Chem.
Phys. 115 (15) (2001) 7227–7234.

[152] J. Stelzer, L. Longa, H.-R. Trebin, Elastic constants of nematic liquid crystals
from molecular dynamics simulations, Molecular Crystals and Liquid Crystals
Science and Technology. Section A, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A
Mol. Cryst. Liq. Cryst. 262 (1) (1995) 455–461.

[153] J. Stelzer, L. Longa, H.-R. Trebin, Molecular dynamics simulations of a
Gay–Berne nematic liquid crystal: elastic properties from direct correlation
functions, J. Chem. Phys. 103 (8) (1995) 3098–3107.

[154] D. Baalss, S. Hess, Nonequilibrium molecular-dynamics studies on the
anisotropic viscosity of perfectly aligned nematic liquid crystals, Phys. Rev. Lett.
57 (1) (1986) 86–89.

[155] S. Sarman, Flow properties of liquid crystal phases of the Gay–Berne fluid, J.
Chem. Phys. 108 (18) (1998) 7909–7916.

[156] M.P. Allen, Simulation of condensed phases using the distributed array
processor, Theor. Chim. Acta 84 (4–5) (1993) 399–411.

[157] R. Memmer, F. Janssen, Computer simulation of chiral liquid crystal phases, J.
Chem. Soc. Faraday Trans. 94 (2) (1998) 267–276.

[158] M.P. Allen, Molecular simulation and theory of the isotropic–nematic interface,
J. Chem. Phys. 112 (12) (2000) 5447–5453.

[159] S.D. Hudson, R.G. Larson, Monte Carlo simulation of a disclination core
in nematic solutions of rodlike molecules, Phys. Rev. Lett. 70 (19) (1993)
2916–2919.

[160] H. Kawamoto, The history of liquid-crystal displays, Proc. IEEE 90 (4) (2002)
460–500.

[161] D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices, 2nd edition ed.,
Wiley, Chichester, West Sussex, United Kingdom, 2014.

[162] J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of
liquid crystals in soft matter nano-, bio- and microtechnology, Curr. Appl. Phys.
12 (6) (2012) 1387–1412.

http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0600
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0605
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0610
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0615
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0620
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0625
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0630
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0635
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0640
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0645
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0650
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0655
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0660
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0665
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0670
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0675
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0680
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0685
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0690
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0695
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0700
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0705
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0710
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0715
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0720
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0725
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0730
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0735
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0740
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0745
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0750
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0755
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0760
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0765
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0770
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0775
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0780
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0785
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0790
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0795
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0800
http://refhub.elsevier.com/S0167-7322(17)35314-X/rf0805

	Introduction to liquid crystals
	1. Literature
	2. What is a liquid crystal?
	2.1. Nematics
	2.2. Cholesterics
	2.3. Smectics
	2.4. Columnar mesophases
	2.5. Lyotropic liquid crystals

	3. Order tensor
	4. The director and the scalar order parameter
	5. Landau–de Gennes free energy
	6. Frank-Oseen free energy
	7. Nematic-isotropic phase transition
	7.1. Landau–de Gennes theory
	7.2. Maier-Saupe theory
	7.3. Onsager theory

	8. Optical properties
	9. Response to external fields
	9.1. Fréedericksz transition in nematics

	10. Charge transport
	11. Anchoring effects
	12. Defects
	13. Liquid crystal colloids
	13.1. Defects around a colloidal particle
	13.2. Effective pair interactions
	13.3. Colloids at a nematic-isotropic interface

	14. Computer simulation of liquid crystals
	14.1. Molecular dynamics of non-spherical particles
	14.2. Forces and torques
	14.3. Gay–Berne intermolecular potential
	14.4. The Monte Carlo technique

	15. Applications
	15.1. Liquid crystal displays
	15.2. Liquid crystal thermometers
	15.3. Polymer dispersed liquid crystals

	16. Supporting information
	Acknowledgments
	References


